Quantum Simulations of Classical Random Walks and Undirected Graph Connectivity
نویسنده
چکیده
While it is straightforward to simulate a very general class of random processes space-efficiently by non-unitary quantum computations (e.g., quantum computations that allow intermediate measurements to occur), it is not currently known to what extent restricting quantum computations to be unitary affects the space required for such simulations. This paper presents a method by which a limited class of random processes—random walks on undirected graphs—can be simulated by unitary quantum computations in a space-efficient (and time-efficient) manner. By means of such simulations, it is demonstrated that the undirected graph connectivity problem for regular graphs can be solved by one-sided error quantum Turing machines that run in logspace and require a single measurement at the end of their computations. It follows that symmetric logspace is contained in a quantum analogue of randomized logspace that disallows intermediate measurements.
منابع مشابه
Random and Pseudo-Random Walks on Graphs
Random walks on graphs have turned out to be a powerful tool in the design of algorithms and other applications. In particular, expander graphs, which are graphs on which random walks have particularly good properties, are extremely useful in complexity and other areas of computer science. In this chapter we study random walks on general regular graphs, leading to a the randomized logspace algo...
متن کاملRandom and Pseudo-Random Walks on Graphs
Random walks on graphs have turned out to be a powerful tool in the design of algorithms and other applications. In particular, expander graphs, which are graphs on which random walks have particularly good properties, are extremely useful in complexity and other areas of computer science. In this chapter we will study random walks on general graphs, leading to a the randomized logspace algorit...
متن کاملh . PR ] 1 5 Ja n 20 02 On the physical relevance of random walks : an example of random walks on a randomly oriented lattice ∗
Random walks on general graphs play an important role in the understanding of the general theory of stochastic processes. Beyond their fundamental interest in probability theory, they arise also as simple models of physical systems. A brief survey of the physical relevance of the notion of random walk on both undirected and directed graphs is given followed by the exposition of some recent resu...
متن کاملNotes on Complexity Theory Last updated : October , 2005 Handout 8
Recall from last time that a random walk on a graph gave us an RL algorithm for the problem of undirected graph connectivity. In this class, we also saw an RP algorithm for solving 2-SAT (see [2, Chapter 7] for details). We now develop some of the theory behind Markov chains and random walks on (undirected) graphs, toward a proof of the following result that was used to analyze both of the abov...
متن کاملScattering theory and quantum walks
We study quantum walks on general graphs from the point of view of scattering theory. For a general finite graph we choose two vertices and attach one half line to each. We are interested in walks that proceed from one half line, through the graph, to the other. The particle propagates freely on the half lines but is scattered at each vertex in the original graph. The probability of starting on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Syst. Sci.
دوره 62 شماره
صفحات -
تاریخ انتشار 1999